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Abstract

Many types of hypersonic aircraft configurations are currently being studied for their
feasibility of future development. Since the control of the hypersonic configuratins through-
out the speed range has a major impact on acceptable designs, it must be considered in
the conceptual design stage. Part I of this report examines the ability of the aerodynamic
apalysis methods contained i an industry standard conceptual design system, APAS II,
to estimate the forces and moments generated through control surface deflections from low
subsonic to high hypersonic speeds. Predicted control forces and moments generaled by
various contro? effeciors are compared with previously published wind tunnel and flight
test data for three configurations: the North American X-15, the Space Shuttle Orbiter,
and a hypersonic researci airplane concept. Qualitative summaries of the results are given
for each longitudinal force and moment and each control derivative in the various speed
ranges. Results show that all predictions of longitudinal stabiltiy and control derivatives
are acceplable for use at the conceptual design stage. Results for most lateral/directional
control derivatives are acceptable for conceptual design purposes; however, predictions at
supersonic Mach numbers for the change in yawing moment due to aileron deflection and_
the change in rolling moment due to rudder deflection are found to be unacceptable. In--
cluding siigldfffg effects in the analysis is shown to have little effect on lift and pitchin
moment-predictions while improving drag predictions. Overall, lateral/directional cont;ﬁ
derivatives show better agreement when shielding effects are not included.

In Part II of this report, an investigatlion of the aerodynamic control effectiveness
of highly swept delta planforms operating in ground eflect is presented. A vortex-lattice
computer program incorporating a free wake is developed as a tool to calculate aerodynamic
stability and control derivatives. Data generated using this program are compared to
experimental data and to data {rom other vortex-lattice programs. Results show that an
elevon deflection produces greater increments in Cj, and Cp in ground effect than the
same deflection produces out of ground eflect and that the free wake is indeed necessary
for good predictions near the ground. S
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Part II: An Analysis of Delta Wing Aerodynamic

Control Effectiveness in Ground Effect

Introduction

Motivation for the Investigation

Due to the new flowfield boundary conditions, like any aircraft, an aircraft
with a highly swept delta planform will experience changes of its stability and
conirol derivatives as it leaves or enters ground effect. Unlike other aircraft, how-
ever, takeoffs and landings are complicaled since elevon deflections produce cou-
pled changes of lift and pitching moments. It is therefore necessary to determine
if there is sufficient control power to trim the pitching moment and allow flight at
a desired lift coefficient when the stability and control derivatlives are modified by
ground effect. Such information is important during preliminary design so that
control surface sizes can be estimaled based on the least favorable flight condi-
tions.

Because of the lift/moment coupling, elevon deflections required to trim can
affect the lift in an adverse, though perhaps transient, manner. An example of
this is the flare maneuver as the aircraft prepares to land. The clevon deflec-
tion necessary to rotale the nose upward causes a decreased camber of the wing
which leads to a decreased lift coefficient. This results in an undesirable loss of
altitude near the ground. As the nose rotates upward, Lift is increased, altitude is
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regained, and the landing proceeds.
~ Given the proper stability and control derivatives as a function of height, it
is possible to integrate the equations of motion to obtain the flight trajectory and

determine if the desired trajectory is attainable.

Scope of the Research

A vortex-lattice-type computer program was written to facilitate the analy-
sis of the effects of the ground. This program will be used as a tool to estimate
the control and static derivatives in ground effect and out of ground eflect. Once
these are known, the equations of motion can be integrated and the flight trajec-
tory found.

The vortex-latiice method is not capable of modelling thickness or viscous
effects. Low aspect ratio delta wings must be thin for high-speed efficiency, how-
ever, so thickness effects may be neglecied to the extent which linearized theory
allows and the viscous effects of leading-edge separation may be accurately mod-
eled by invoking the Polhamus Suction Analogy (Ref. 1-3). Since the program
is intended for preliminary design purposes, it is required that it yields reliable
results in a rcasonable amount of iime. A vortex-lattice program is therefore ap-
propriate.

The program was named VLM-FIG, an acronym for Vortex-Lattice Method
for analyzing Flaps In Ground effect. It is capable of analyzing wings which are

twisted, cambered, or cranked at the leading and trailing edges. [t can account



for dihedral and can predict the eflects of symmetrical leading- or trailing-edge
flap deflections. If there are several flaps, each can be deflected independently.

The program incorporates a deformable wake and a provision to place a ground
plane at a desired location below the wing. The time-dependent effects of the free
wake and ground plane interactions are not considered. Although some recent re-
search has shown the time rate of change of altitude to be critical for the accurate
prediction of aerodynamic characteristics in ground eflect, these claims are more
true for aircraft which have extremely steep glideslopes than for supersonic trans-
ports or even glider-type hypersonic aerospace planes (Refs. 4,5).

The program will calculate the lift and moment coefficients in or out of ground

effect, and with or without control deflections.

Review of Previous Work
Theoretical Prediclions

Vortex-lattice computer programs have been used in the past to predict the
potential flows over delta wings and have been combined with the suction anal-
ogy to predict the aerodynamic characteristics of delta wings (Rel. 6-9). These
programs have been shown to be good predictors of delta wing characteristics,
and have also been shown to be capable of predicting the low-speed aerodynamic
characteristics of hypersonic wing-body combinations (Ref. 10). If the planform
is cropped and/or cranked, then certain correction factors can be applied to the

suction analogy to improve its predictive capabilities (Ref. 11-13).



Carlson et al. (Ref. 14-18) have developed vortex-lattice programs to pre-
dict the flap eflfectiveness for wings with near-delta planforms. The programs deal
with only attached flow and they predict that the flap efficiency is highest when
both the leading- and trailing-edge flaps are deflected. The programs use a flat
wake approach and do not consider the effects of the ground. VLM-FIG has sim-
ilar capabilities but is also able to predict the control power near the ground and
considers the influence of a relaxed wake.

Fox (Ref. 19) uses a vortex-lattice code with a flat wake to obtain ground ef-
fect data for delta wings. The program predicts the expgrimenta.l lift coeflicient
data well, but pitching moment and control power are not evaluated. More re-
cently, Nuhait and Mook (Ref. 20) have investigated delta and non-delta plan-
forms using an unsteady ground eflect vortex-lattice program. It was found that
for the steady case, aerodynamic coeflicients generally increase as the wing nears
the ground. The time rate of change of altitude enhances this effect, and greater
aerodynamic increases were caused by greater sink rates. Thus, aircraft with

steep glideslopes are more aflected by time-dependent effects.

Ezperimental Resulls

During the early 1960’s work was continuing on the development of the Con-
corde and, consequently, a systematic study of the effect of the ground on the
aerodynamics of delta wings was conducted by Peckham (Ref. 21). Complete

pitching moment and lift data was obtained for a series of delta wings with sharp



edges, but no control deflections were included.

- Chang and Muirhead (Ref. 4) conducted an experimental investigation of the
time-dependent ground effects on delta wings. At high angles of attack and low
ground heights, the unsteady effects ncarly double the effect of the ground. The
data was generated at a sink rate of h/V = 2.0, however, which corresponds to a
highly unrealistic glideslope angle of more than 60°.

There is a void in the literature for the subject of delta wings with control
deflections in ground effect. Apparently, no studies similar to Peckham’s have
been conducted using delta wings with flaps in ground effect. Coe and Thomas
(Ref. 22), however, have used an arrow-wing configuration for such a study, and
the general trends of increasing aerodynamic coefficients with decreasing ground

height were again observed.



Theoretical Developments

‘ The Vortex-Lattice Method

From the Kutta-Joukowski Theorem, it is known that the lift of an airfoil is

uniquely determined by the amount of circulation which it generates.

where v is the vortex strength per unit span, the span being in the direction of
the axis of the vortex.

It can be easily shown using potential flow theory that an infinite vortex
sheet with a constant strength per unit length in the plane of the vortex v, will
induce a velocity of

_Jo
V=g (2.2)

If such a distributed vortex is placed in an appropriately oriented free stream, the
velocity above the vortex will add to the free stream velocity, while that below
will subtract.

Because Bernoulli’s Principle stales that the difference in the velocities of
this flowfield will create a pressure difference, this distributed vortex will expe-
rience a self-induced force which acts normal to the free stream. This force will

have a magnitude which can be found by beginning with the Bernoulli equation,

1 1
P1+§pV12=P2+§pV22
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where the subscripts 1 and 2 represent the location below and above the vortex,

respectively. From Equation 2.2

Vi=v-2
Yo
Vo=V 4 —
2 + 2
Substitution leads to
_ 1 oy ey Ipy2

which reduces to

1
AP =5 p(2V 7o)

To convert the pressure to a force, it must be multiplied by an area of 1-dz. This
results in

dl = APdz = = p(2Vyp)dz

DD | =

Using the relation
1
y= / Ypdz (2.3)
0

and integrating both sides over a unit chord length, the above yields Equation 2.1,
the Kutta-Joukowski equation (Ref. 23). Thus, a distributed vortex in a free
stream can be used to model the flow over a thin airfoil.

Since the preceding approach to estimating the lift includes only vortices,
there is no provision to account for the effects of thickness on the airfoil aerody-

namic characteristics. For thin airfoils, which are necessary to reduce the wave



drag of supersonic or hypersonic aircraft, this should not impede an accurate so-
lution. In addition, this approach does not restrict the airfoil to lie on a straight
line, since each segment may be linked to another at a different angle. If more
that one segment is present, however, the lift cannot be found so simply. Because
the vortex is no longer an infinite line, the induced velocities above and below the
vortex become unknown.

Supposing that this problem can be overcome, then the force normal to a
plane containing the vortex and inclined to the free stream at an angle a, can be

determined by the equation

[= p(Vcosa)yp (2.4)

A force will also be generated parallel to the plane due to the addition and sub-
traction of vortex-induced velocities to the free-stream velocity component V sin e,

which is given by

= p(Vsina)yp (2.5)

This force may be thought of as the leading-edge suction force, which is predicted
by thin airfoil theory as a singular velocity at the leading edge of the airfoil. This
singularity causes an infinitely low pressure acting over an infinitely thin leading-
edge radius to produce a force which exactly cancels the drag due to the lift which
acts normal to the tilted airfoil. In this way, D’Alembert’s paradox remains satis-

fied.

Since an airfoil does not produce lift by generating a constant rectangular
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velocity field over its surfaces; a better approximation for the flow over an airfoil
can be obtained using a series of linked vortices of differing strengths. Also, since
a voriex sheet can be related to a point vortex by Equation 2.3, the airfoil may
be further discretized by replacing each vortex sheet with a point vortex of equal
total strength. Each of these point vortices is placed at the one-quarter chord
point of its respective elemental chord, in accordance with Prandtl’s standard lift-
ing line theory.

In a similar fashion, two or more chordwise strips of vortices placed side-by-
side and parallel to one another may be used to model a wing. Figure 2.1 shows
how such a lattice of vortices can represent a wing. One important distinction be-
tween the two-dimensional airfoil and the three-dimensional wing is that the vor-
tices of the wing must be horseshoe shaped to satisfy the conservation of vorticity.
The continuous variation of vorticity in both the chordwise and the spanwise di-
rections on the finite, three-dimensional wing is approximated by this lattice of
horseshoe vortices.

Once the wing has been divided into the desired number of trapezoids, re-
ferred to as panels, with a horeshoe vortex bound to the quarter-chord line of
each panel and filaments extending back along the sides of the panel to infinity,
the procedure for deterrr'lining the aerodynamic characteristics of the wing can be
developed.

The distribution of the force acting on the wing surface is necessary since
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Figure 2.1 Vortex Lattice Arrangement Representing a Delta Wing and Its Wake.
(Only One Row of Horseshoe Vortices Is Shown for Clarity)
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it determines the aerodynamic characteristics. To determine this distribution,
the velocities induced by each vortex must be found. A simplified approach is no
longer applicable, since the flow is three dimensional and since each vortex has a
different strength. To determine the velocities, the effect which each vortex has

on the velocities near itself as well as on every other vortex must be considered.

The Biot-Savart Law

The Biot-Savart law can be used to determine how the point vortex will af-
fect the velocity over its own panel and how it will effect velocities over the other

panels, too. The equation can be writien in its most general form as

—  I(dl x7P)

dV = (2.6)
47| 7 |3

Since each horseshoe vortex consists of a left segment, a bound segment, and a

right segment, this equation must be applied to each segment and then summed
to obtain the total effect of one complete horseshoe vortex. If the endpoints of a
certain segment are A and B, and the induced velocity is desired at point C, as

shown in Figure 2.2, then the expression for the velocity can be written in the

form:
V., = i (cosfy — cosfy) (2.7
4mr,
where
X T
r,= ———* (2.8a)



Figure 2.2 The Geometrical Arrangement for Applying the Biot-Savart Law to a
Vortex Segment with Positive Vorticity Directed from A to B

12
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cosf = 21 (2.8b)
ToT1
.. 7
cosfly = —2—2 (2.8¢)
ToTy

Equation 2.7 is a vector equation. If the points are arranged according to
Figure 2.2 and the vortex has a positive sign and points in the direction from A
to B, then the algebraic signs of the induced velocity will be accounted for prop-
erly (Ref. 24). Care must be taken to insure that the vortex points in the proper

direction or the sign of the induced velocity will be opposite of what it should be.

Determination of the Influence Coefficients

The velocity which a particular horseshoe vortex induces at every other panel
can be found by summing the velocity induced by its left, bound, and right seg-
ments at the point C, which varies to represent the location of different panels.
The location of point C on a given panel is the three-quarter chord point of the
panel and it is centrally located in the spanwise direction of the panel. This point
is referred to as the control point of the panel. Thus, every horseshoe vortex in-
fluences every control point on the wing according to Equation 2.7. Since the in-
dividual v,, are not yet known, only the influence coeflicients, represented by the

factor

Comn = 1 ! (cos 8, — cosfy) (2.9)

TTp



14

can be calculated.

~ In addition to the coeflicients from one side of the wing, the coefficients from
the other side of the wing must be included. This does not double the number of
unknowns since the flowfield is symmetric; however, the same procedure to cal-
culate influence coefficients at every control point due to every vortex must be
executed. This doubles the number of calculations and, since this represents the
largest fraction of the calculations, the CPU time will nearly double.

If the flowfield were not symmetric, the number of unknowns would double
and the flowfield would need to be solved as a single entity. This would require
storing all of the locations of both the left and right side vortices. In the case of
a symmetric flowfield, the vortlices on opposite sides of the wing centerline can be
treated as mirror images, but located at different distances from all the control
points on the right side. This is illustrated in Figure 2.3. This has the simpli-
fying effect of allowing the coordinates of the right half to be used to calculate
the influence coefficients of the left hall merely by changing the sign of the y-
coordinates of the segment endpoints. Note that poinls A and B are interchanged
since the sign of the vorticity is opposite.

Now, the influence coeflicients from each vortex 4, are known at each control

point, C,,. This represents a set of simultaneous equations which can be written
—)
Voan = C mnn (2.10)

where n represents a particular vortex and m represents a particular control point.
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Figure 2.3 Reflection Over the Mid-Chord Line to Define Points on the Left Portion
of the Wing
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All that must be determined are the strengths of the individual vortices.

These are found by requiring that the free stream flow perpendicular to the wing
at each control point does not pass through the wing but, rather, is blocked by
being equal but in the opposite direction to the induced velocity perpendicular to
the wing at each control point. The solution is a function of the angle of attack,
the dihedral angle, and the local slope in the chordwise direction. For a flat wing
with no dihedral, it is only a function of the angle of attack at each control point

as given by

w=Vsino (2.11)

Departures from this simplified case are small for thin supersonic wings which
have little camber (Ref. 6-9).

With the velocities, boundary conditions, and influence coeflicients known,
the strengths of all the vortices can be found. This is the most important step
of the vortex-lattice method. Once the strengths of the vortices are known, the

flowfield is solved and the aerodynamic properties of the wing can be found.

Calculation of the Lift Coeflicient

The lift coeflicient of an airfoil can be calculated as follows. Beginning with

the definition of sectional lift coefficient,

l=>pVicC (2.12)

1
2
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and equating the left side to Equation 2.1 yields
1 2
-2-pV cCr=pVy (2.13)

Without loss of generality, the free stream velocity may be set equal to 1. Can-
celling the density results in a equation which relates the lift coefficient directly to
the circulation

G =2 (2.14)

For a three-dimensional wing, the analysis needs to be generalized a bit more.
The spanwise sectional lift coeflicients are summed using a weighted average of
the local chord times the local lift coeflicient. Consider a wing which has continu-
ously varying lift and a continuously varying chord in the spanwise direction. The
wing will be discretized depending on the spanwise number of horseshoe vortices
which is chosen to represent the wing. Such a wing is shown in Figure 2.1. The
wing lift coefficient can be obtained from Equation 2.14 by summing the sectional
lift coeflicients across the span and weighting each by the amount of wing area
which its panel covers. Allowing the subscript j to represent a particular span-

wise location, and summing across the span leads to

NSPAN

CL = § Z CjCIJ.Ay

i=t
Substituting Equation 2.14 into this expression yields

NSPAN

1
CL=75 ; 2v; Ay (2.15)
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where

NCHORD

v = Z ¥i J = constant
i=1
Multiplying by two to account for the lift acting on both sides of the wing yields

4A NSPAN
CL=—%" Z 7; () (2.16)

j=t
It is interesting to note that the effect of weighting the lift coeflicient by the panel
area is to eliminate the local chord term from the final equation. The only term
with chordwise or spanwise dependence remaining in Equation 2.16 is the circula-
tion term. This allows for a slightly simpler summation procedure. The method
for calculaton of the pitching moment follows from this derivation and will be dis-

cussed toward the end of this chapter.

The Free Wake

The standard vortex lattice consists of horseshoe vortices which each trail
two filaments, at some fixed angle, from the bound vortex to infinity. This is re-
ferred to as a flat or fixed wake method. In this method, the wake will support
a pressure difference across its boundary and alter the frec-air aerodynamic co-
eflicients. At high angles of attack and for low aspect ralios, the wake becomes
more deformed, implying that a flat wake approach will support greater pressure
differences and cause anomolies in the aerodynamic predictions.

The standard approach also causcs difficulty when a ground plane is intro-

duced for obtaining the ground effect characteristics. Since the filaments trail
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downward towards the ground plane, they will intersect and pass below the ground-
a serious misrepresentation of reality. Furthermore, the image filaments below the
ground will pass up and through the ground into the real world resulting in an-
other serious misrepresentation. Since these problems are pertinent particularly
to this investigation, a free wake analysis was used. The final geometry of the free
wake was determined using the following procedure.

The wake location is determined by using an iterative process which calcu-
lates the wing lift distribution, moves the wake, calculates a new lift distribu-
tion, and moves the wake again. This continues until the entire wake converges
to within a specified criterion.

The geometry of the wake and trailing filaments are shown in Figure 2.4.

The trailing filaments are subdivided into several segments on both the wake and
the wing. This allows the vortex filaments to more closely approximate a curved
path in the wake, or the camber of the wing. This does not have any effect on the
strength of the vortices, it simply allows flexability of location.

Each segment endpoint, except for the last one, is a node at which down-
wash and sidewash velocities are calculated. The velocities are found by using the
Biot-Savart law, just as are the influence coefficients at the control points on the
wing. For the wake, however, the strength of each vortex is known, so the veloc-
ities may be directly calculated without solving a set of simultaneous equations.

The velocity at a node determines the new wake location at that node. Before the
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Figure 2.4 Vorticity Segments in the Wake and the Geometry Used for Moving Them
After an Iteration (u and AX Are Not Shown).
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velocities are calculated for the first time, each node in the wake shares the same
Y- and z-coordinates as the point on the wing trailing edge over which it passes.
Each successive node behind the trailing edge will have an z-coordinate which is
Awake greater. This has the effect of preserving the sweep angle and shape of the
trailing edge throughout the wake.

From the magnified portion of the wake in Figure 2.4, it is easy to see that

Az = %Awa.ke =0 (2.17a)

Ay = % Awake , (2.17b)
w+ Vsina

Az = —v Awake (2.17¢)

In words, the free stream velocity acting over a certain time divided by the
induced z, y, and z velocities acting over the same time will yield a vector which
points directly towards the new wake location. It is necessary to add the z com-
ponent of the free stream to the velocities in the wake since no solid surface pre-
vents flow through the plane of the original wake. When this is multiplied by
Awake, the new wake location is determined and the node can be moved. Thus,
the induced velocities at the node just ahead of node i must be used to determine
the new location of node i. So although the trailing edge is fixed, the velocities
must be calculated there for the next wake node to be properly moved. Similarly,
this explains why it is unnecessary to calculate the induced velocities at the final

wake node.
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The wake nodes of each iteration can be compared to the locations found by
the previous iteration or, equivalently, they can be compared to the locations of
fixed points in the wake. This investigation uses the second approach since the
programming is easier to implement, and uses the original wake locations as the

fixed locations in the wake. Reference to Figure 2.4 allows a comparison of the

type
specified
¢T current _¢Tpr!v|oul < convergerice (218)
Tteration iteration criterion

There are several methods by which the wake iteration may be terminated.
The distance that the wake will move is not known a priori, since the value of
Awake is arbitrary. For this reason, it was decided that the wake convergence
should be measured in terms of angular distance. Equivalent downwash velocities
at different locations in the wake will result in different angles, if they are mea-
sured with respect to a line emanating from a single location such as the wing
trailing edge. It is conceivable that for points far back in the wake such an ap-
proach could lead to a “trigonometric convergence” where even large wake move-
ments would be dwarfed by the node’s distance to the trailing edge. If angles are
measured with respect to appropriate and different points for each node, however,
then angular distances are as reliable as linear distances and the a priori knowl-
edge of the magnitude of Awake is not required. These appropriate points are
the original wake nodes and the angle which is measured is denoted in Figure 2.4

as ¢r. Two successive iterations generate two values of ¢7 per node and if all of
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these values are within say, 1/100 of a degree, the iteration is terminated.

The Ground Effect

The effect of ground proximity is modelled by placing an identical image
wing the same distance below the ground as the real wing is above the ground.
The sign of the circulation of the image wing is equal in magnitude but opposite
in direction to that of the real wing. This has the effect of switching points A and
B in Figure 2.2. The geometry of the two wings near the ground is shown in Fig-
ure 2.5.

Finding the coordinates of the vortex segments which lie on the image wing
and in the image wake is accomplished similarly to the previously discussed ad-
dition of the left half wing. Because the wing is at an angle of attack, however,
certain transformations must be used to determine the coordinates of the image
wing. For very small angles of attack, these transformations vanish since the in-
tersection of the extensions of the two wings is approaching a point infinitely far
downstream. If this were the case, the coordinates of the image wing would be
determined by switching signs of the y- and/or z-coordinates of the real wing, de-
pending on the particular location of the image segment. As shown in Figure 2.6
and using Region 1 for comparison, Region 2 would hzvl've opposite y-coordinates,
Region 3 would have opposite y- and z-coordinates and Region 4 would have op-
posite z-coordinates.

Since the image wing coordinates are found by rotating the real wing through
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an angle of 2a, such a simplified approach can not be used if o is not approxi-
madlely zero. Instead, the z-coordinates of Region 3 and Region 4 must undergo
transformations rather than sign changes. This z-coordinate transformation de-
pends on h/b and the additional height above the ground caused by camber, di-
hedral, and twist. The changes in the signs of the y-coordinates are, however,
the same as those changes which would be made when considering the illustrative
simplified case.

The transformations of the coordinates for the general case of an angle of at-
tack which is not approaching zero are as follows. First, the point of intersection
of the downstream extension of the mid-chords of the two wings must be deter-
mincd. If the height of the wing above the ground is measured from the trailing
edge and is non-dimensionalized by the wing span, the intersection point, INT, is

found by
h/b

sin o

INT =

(2.19)

The z-coordinates of the image wing are also found using simple geometry by the

equation

z9 = z; — (DIST) sin(2a) (2.20)

where

DIST = [(XTE(I) — z1) + INT] cos(2a) (2.21)
The new z-coordinates are then found by the equations

z, = INT' — DIST (2.22)
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where

INT' = XTE(J) + INT (2.23)

If the non-dimensional rool chord has been set to I, then XTE(I) = 1 for Equa-
tions (2.21) and (2.23). If the trailing cdge is nolched lo crcate an arrow-type
planform, it is important to determine the value of the root chord h/b which cor-
responds to the wing lip intersection with the ground. This is the minimum A/b
achievable for that planform.

In order to compare the h/b values obtained from sources which use points
other than the trailing edge to reference the wing height above the ground, the

following conversion formula is used
h = hoource — (c,, — Crer) SIN O (2.24)
¢, can be set 1o 1 as it has been for other calculations.

The Suction Analogy
Total Lift

T'or highly swept, low aspect ratio wings, potential flow theory is not sufli-
cient for calculating the aerodynamic characteristics. Above a small angle of at-
tack, which is approximately 4 degrees for thin supersonic or hypersonic wings,
the potential flow separates from the leading edge and creates a strong vortex
above the wing along the leading edge. The vortex will contribute to the lift and

the drag of the wing and as the angle of attack increases, the vortex becomes
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stronger. At angles of attack greater than about 20 degrees, the part of the vor-
tex near the trailing edge will begin to migrate inboard as well as upward and
away from the back of wing.

In order to calculate the affects of this vortex, the Polhamus Suction Analogy
is used. The method is based on the premise that when the flow separates from
the leading edge, the leading-edge suction force is rotated 90° to become a lift
force rather than a thrust force. It is also assumed that the flow reattaches to the
wing downstream of the leading-edge vortex and implicitly requires a Kutta-type
boundary condition at the leading edge. An interesting feature of this method is
that it uses potential flow theory to calculate the non-linear vortex effects.

According to the suction analogy, the lift coefficient of a delta wing is given

by

Cp = K, cos’a sina + K, cosa sin’a (2.25)

where the first term represents the potential lift and the second term represents
the leading-edge vortex lift. The first term does not include the component of the
leading-edge suction force which acts in the positive z-direction, rather, this term
is included in the vortex lift term.

The factor K, is determined by calculating the spanwise sectional lift coef-
ficients, dividing them by cos?a sin @, and then summing them across the span.

For small angles of attack, cosa ~ 1, sina = a, and sin’e ~ 0. In this case,
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Equation (2.25) reduces to

C = K,a

which shows that K, is simply the potential lift curve slope. For a delta wing of
given aspect ratio, K, is constant to first order. When the effects of a deformed
wake are included, it becomes a weak function of the angle of attack. It is also a
function of the wing height above the ground.

The factor K, is determined by applying the Kutta-Joukowski theorem to

the flow around the leading edge of the airfoil. This approach yields

C, = 2(sin a — sin a;)y (2.26)

c

which is the same form as Equation 2.14. Following a similar procedure as was

used to calculate Cp for the entire wing, Cr for the entire wing is given by

4Ay NSPAN

Cr = Z % (sin o — sin a,N)j (2.27)
j=1

A

The suction force depends on the local leading-edge sweep angle and is given

by

Cr
= 2.2
Cs = A (2.28)

The vortex lift, Cr,, and the vortex constant, K,, are then given by

Cry =Cscosa (2.29)

K, = Cp,/sin’a cosa (2.30)
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Like K,, K, is constant to first order, but is a function of the angle of attack
when the effects of the deformed wake are included. It is also a function of the

wing height above the ground.

Total Piliching Momeni

The potlential pitching moment is calculated by finding the normal force
which acts on a particular panel and multiplying it by the panel distance to the
wing apex. This is repeated for each panel and then summed to obtain the total
moment. Note that because of the loss of leading-edge suction, Cy is given by

the equation

Cn =CL/cosa A (2.31)

The vortex lift causes a moment also, but the method for finding it is somewhat
different. Since the flow separates at the leading edge, the vortex lift acts close
to the leading edge across the entire span. Thus, vortex lift is almost a force per
unit length of leading edge rather than a force which is distributed over all of the
panels of the wing, as is the potential lift. The leading-edge suction force is cal-
culated at a particular leading-edge segment to the apex. It is assumed that only
vortices in the chordwise row of the leading-edge segment influence the suction
force at that segment.

In order to compare data [rom refcrences which use different pitching mo-
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ment axes and different reference chords, the following conversion is used

¢ C
Cm = [i (Cm — CMO)] — = (Zmoment (2.32)

o ¢/ co

Normally, the sign of Cps from the source will be negative.

Strictly, the suction analogy is applicable only to delta planforms. For arrow-
type planforms, there may not be enough outboard wing area for the flow to reat-
tach as the analogy requires. For dia.mond-‘typé planforms, there is area behind
the basic delta shape which allows for additional lift, which is mainly potential.
The effect of the notch ratio on the lift coeflicient is small; however, the effect of
the notch ratio on the pitching moment coeflicient is large since the notch is lo-
cated at the rear of the wing. This provides a large moment arm for small changes
in lift and results in poor predictions for non-delta planforms.

The wing leading edge may be cranked and the wing tip may be cropped. If
this i1s the case, there are additional vortex constants which account for the lift
generated around the side edge and for the downstiream persistence of a shed vor-

tex due to a change in the leading-edge vortex strength caused by the crank.

Flap Deflections

When a flap is deflected, it changes the locations of the vortex segment end-
points and the control points which lic on panels which are affected by the deflec-
tion. Also, the slope of the wing at the affected control points is changed by an

amount equal to the flap deflection angle. These changes in location and slope
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alter the influence coefficients and boundary conditions, resulting in a different

flowfield.
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Results and Discussion

Verification of Results

Figures 3.1-3.10 are presented to provide a validation of the ability of VLM-
FIG to predict experimental results. They are also intended for comparison of
VLM-FIG to other programs, primarily the Aerodynamic Preliminary Analysis
System, APAS (Ref. 25) which is a fixed-wake vortex-lattice program.

Figure 3.1 compares the results from several programs and also presents an
experimental data sel which can be compared to the predicted total lift coeffi-
cients. The potential 1ift coefficient is of inlerest for comparing the theoretical
analyses, but it cannot be separated from vortex lift in reality. From 0 to 12 de-
grees angle of attack, all three methods agree well with the experimental data,
but APAS is slightly better; beyond 12 degrees, VLM-FIG is the best predictor.
The agreement which APAS shows at these low angles of attack is, apparently,
fortuitous.

APAS calculates aerodynamic coeflicients for unit angles of attack and for
unit flap deflections and then multiplies the coeflicient by the actual angle of at-
tack of flap deflection to obtain the actual coefficient (Refl. 25). For this reason,
APAS results are completely dependent on the low angle of attack aerodynamic
characteristics. The slope of the potlential lift curve is theoretically greatest at
a = 0° and gradually decreases with increasing a. If the slope at @ = 1° is
used for all angles of attack, the potential lift curve will be linear and will pre-

33
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dict potential lift coefficients which exceed those predicted by VLM-FIG type pro-
grams. This scenario maiches exactly the potential lift curve in Figure 3.1. The
vortex lift coefficient is directly proportional to a function of the slope of the po-
tential lift curve so, if the slope is overpredicted, then the vortex lift is also over-
predicted. Thus, APAS incorrectly overpredicts the potential lift, the vortex lift,
and consequently, the total lift, resulting in apparently fortuitous agreement with
the experiental results.

It is interesting to note that VLM-FIG and TN D-3767 predict identically
the potential lift curve throughout the angle of attack range, but they predict
slightly different total lift coefficients at higher angles of attack. Since VLM-FIG
uses a relaxed-wake approach and TN D-3767 does not, it can be inferred that
the effect of the relaxed wake out of ground eflect is Lo alter the vortex lift co-
efficient only. This is equivalent to slating that the free wake causes the vortex
constant, K,, to become a function of the angle of attack, but that it does not
strongly affect the potential constant, K.

Figure 3.2 compares the pitching moment coefficients predicted by VLM-FIG
with those predicted by APAS and experimental data. VLM-FIG produces results
which eliminate about 60% of the error which would be obtained using APAS.
The longitudinal potential lift and vortex lift loadings are similar, but the cen-
troid of the potential hift is located somewhat farther aft than the vortex lift, ex-

cept at low lift coefficients. Thus, the potential lift moment is greater than the
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vortex lift moment for all but the lowest lift coeflicients. Near C;, = .11 the two
are about equal. In this figure, the voriex moment is not represented by the dif-
ference between the total and potential moments since the potential moments are
plotted versus potential lift coefficient and the total moments are plotted versus
total lift coefficients.

The change in slope of the total moment coefficient curve at C;, = .08 is
most likely due to onset of measurable amounts of vortex lift. This is shown in
Figure 3.1 as a change in the slope of the total lift coefficient at & = 3° and such
a change would have the effect of shifling the total moment curve to the right, as
in Figure 3.2.

Figure 3.3 is intended to illustrate that the moment coeflicient is not well
predicted by the suction analogy if the wing has an arrow type planform, as ver-
ified experimentally in TN D-6344. An arrow planform can be considered a delta
planform with additional outboard wing area behind the trailing edge. This ad-
ditional area allows the leading edge vortex to persist further aft and create a
stronger nose-down moment than that predicted by the suction analogy. Other
figures which display comparisons to arrow wings should be viewed in this light
(Rel. 26).

Figure 3.4 shows the change in the moment coefficient due to unit elevon de-
flection centered at 8° and 20°. Both APAS and VLM-FIG show that the nose-

down moment which is generated will increase as the lift coefficient increases,
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but the APAS values do not change as much with lift coefficient. VLM-FIG pre-
dicts decreasing control power for higher control deflections, while APAS predicts
that control power is nearly independent of the control deflection. This difference
probably results from the free-wake analysis of VLM-FIG, which is able o model
the non-linear effects at high deflection angles. The variations observed in the
APAS predictions result from non-linearities inherent to the suction analogy.

Figure 3.57compares the predictions generated by VLM-FIG, APAS, and ex-
perimental data when a 70° delta wing enters ground effect. Again, VLM-FIG
produces better results than APAS, although it still overpredicts the experimental
value obtained at o = 15°. At such intermediate angles of attack the leading-edge
vortex begins to migrate upward at the rear of the wing due to real fluid effects.
This causes a decrease in lift and pitching moment coefficients which could ex-
plain the theoretical overprediction.

There is no standardized procedure for non-dimensionalizing the height of
the wing above the ground. For this investigation, the height above the ground is
defined as the height of the root-chord trailing edge and it is non-dimensionalized
by the wingspan. Fox (Ref. 19), for example, defined the height as the height of
the local quarter-chord point of the mecan aerodynamic chord and non-dimen-
sionalized by the mean aerodynamic chord. Thus, conve rsions were necessary to
compare heights which had been non-dimensionalized differently. Unfortunately,

the wing height above the ground is a function of the angle of attack of the wing
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which disallows a one-lo-one height conversion factor from the reference data set
to the VLM-FIG data set. Each height, therefore, requires its own angle of at-
tack conversion. Using Figure 3.5, as an example, the reference’s non-dimensional
height was .4, which corresponded to a VLM-FIG non-dimensional height of .4625
at @ = 10° and .4675 and o = —15°. In this case, the conversion is almost in-
dependent of angle of attack and there is almost a one-to-one conversion. The
height differences for other figures arec much greater, however, and cannot be ig-
nored. The range of non-dimensional heights used will be stated in each figure, as
needed.

Figure 3.6 shows how the ground aflects the moment coefficient of a 70° ar-
row type planform. This planform has the same leading-edge sweep angle and
notch ratio of a more complex planform, which was part of a configuration, pre-
sented in TP-1508. Based on this idealization and the intrinsically poor arrow
wing prediction capabilities, the figure is internally consistent.

The change in moment coefficient due to a 1° change in elevon position at
a deflection of 20° on a 70° delta wing is shown in Figure 3.7. As in Tigure 3.4,
VLM-FIG predicis a greater nose-down moment than APAS. When Figures 3.4
and 3.7 are compared, it becomes evident that both methods are affected by the
ground in a similar way, namely, that the ground provides additional eontrol power.
The increment predicted by VLM-FIG is about that which APAS predicts for low

to medium lift coefficients. At a lift coeflicient of 1.0, however, the kink in the
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VLM-FIG moment coeflicient causes a cross-over with the values predicted by
VLM-FIG in Tigure 3.4 and consequently, there is slightly less control power pre-
dicted at a lift coeflicient of 2.0. APAS shows no such change, but rather a con-
tinuously increasing difference beiween the two as the lift coeflicient increases.
Figures 3.8 and 3.9 compare the values of the polential and vortex constants

as predicted by two methods. For an aspect ratio of 1.0, the two methods match,

‘which causes the potential lift agreement found in Figure 3.1. The vortex lift con-

stant, which becomes a function of angle of attack when the wake is relaxed, is
calculated at low angle of attack for gencrating the data in Figue 3.9. At low an-
gles of attack, VLM-FIG predicts a vortex constant which is just less than that
predicted by TN D-3767. At high angles of attack, however, VLM-FIG predicts
a vortex constant which is grealer than that predicted by TN D-3767; this is ev-
ident in Figure 3.1 as a cross-over near 8° of the values predicted by these iwo
methods.

Figure 3.10 compares two theories and an experiment and shows that lift
increases due to ground effect as the wing approaches the ground. Both closely
predict the experimental values, but VLM-FIG is better until a non-dimensional
height of about 0.2. The difference beiween the two predictive methods is primar-
ily that VLM-FIG has a relaxed wake and TN D-4891 does not. For this reason,
it seems strange that TN D-4891 apparently predicts the Iift better at very low

heights above the ground. As with Figure 3.7, a non-dimensional height of 0.11
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represents a true height of .05¢,, which is so close to the ground that the airplane

will most likely have landed.

VLM-FIG Predictions

The nose-down moment coefficient increases near the ground as shown in
Figure 3.11. The coefficient 0Cps /O« is nearly constant with changing non-di-
mensional height, portrayed by the nearly constant difference between the two
curves in the figure. At lower non-dimensional heights 9Cy /Oa is slightly greater,
indicating that as the airplane begins to flare and increase its angle of attack, the
nose-down pitching moment increases shightly. As with any airplane, it is impor-
tant that this parameter does not markedly decrcase as either « is increased or
h/b is decreased, since this could lead to an unstable situation as the airplane de-
scends. As such, however, the longitudinal stability does not decrease when the
airplane is operating in ground effect.

Figure 3.12 was generated by using data obtamed from VLM-FIG when it
operated in its normal mode and when it was forced {o terminate after the flat
wake aerodynamic characteristics had been calculated. It shows {hat most of the
out-of-ground-effect discrepancies between the two methods occur at higher an-
gles of attack, which is consistent with the limitations of linearized theory. At
an angle of attack of 24°, the ratio of the change in vortex lift to the change in
potential lift, ACL,/ACL,, is 3.7. This supports the assertion made concerning

Figure 3.1 that the effect of the free wake is to alter primarily vortex hft.
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Figure 3.13 also compares the flat and relaxed wake values which were gener-
ated by VLM-FIG. The potential and total moments for both wakes are identical,
indicating that the centroid of the Iift does not change when the wake is relaxed,
even though the lift does change. An inleresting feature of this figure is that the
slope of the potential moment becomes more negative with increasing lift coeffi-
cient but the total moment slope remains constant with lift coefficient. The sig-
nificance of this feature is unclear at this time, but it implies that a non-linear
vortex moment adds to the potential moment in such a way to keep the total mo-
ment a constant function of the lift coeflicient.

The differences between the flat and relaxed wake predictions are much dif-
ferent when a wing is analyzed in ground effect, as Figure 3.14 illustrates. At
low angles of attack, the potential lift and vortex lift are higher for the flat wake
method than for the relaxed wake method. According to Figure 3.15, the per-
cent change between the lift coefficient in ground effect and out of ground effect
is greatest for the flat wake near an angle of attack of 3°. This is reflected by
the decreased slope of the flat wake curves in Figure 3.14. The reason for these
changes in slope is that until the angle of attack reaches about 3°, the increased
circulation 1s more strongly influenced by the height of the wing above the ground,
but after that, is more strongly influenced by the angle of attack of the wing. For
the relaxed wake, it seems that most of the increase in lift coefficient occurs due

to ground proximity; however, there is some increase in the lift coeflicient due to
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operating at high angles of attack near the ground. These curves agree with the
general trends and orders of magnitude of data presented in Reference 4.

Figure 3.16 shows that the relaxed wake method predicts a pitching moment
which differs by a few percent from that predicted by the flat wake method when
operating in ground effect. Thus, the center of pressure moves slightly aft due to
the relaxed wake in ground eflfect. This could be a result of the relaxed wake be-
ing more strongly constrained by ils image wake than the flat wake is constrained
by its flatness condition. It seems logical that the -rear portions of the wing would
then be more affected by this than the front portions, resulting in rearward center
of pressure movement.

Figure 3.17 is a comparison of the lift coefficient in ground eflect and out of
ground effect as a function of the angle of attack. The curves were generated by
combining the relaxed wake results of Figures 3.12 and 3.15. The increase in po-
tential lift accounts of about 1/3 of the total lift increase at @ = 24°, while it
accounts for almost all of the total lift increase at low angles of attack. Since the
vortex and potential lifts are nearly equal at @ = 24°, and since the increase in
the vortex lift is twice that of the potential lift, it can be inferred that the ground
affects the vortex lift more than it aflects the potential ift. At such high angles
of attack, however, real-fluid effects cause the leading-edge vortices to move up-
ward ofl the aft portions of the wing, causing a decrease in vortex lift. Therefore,

it should be expected that, in reality, the ground will cause the vortex lift to rep-
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resent a smaller percentage of the total lift than VLM-FIG predicts. The effect
that an image leading-edge vortex has on the wing leading-edge vortex should be
modelled by VLM-FIG, since the vortex strength is determined in part by the
downwash and since the downwash is included in the theory.

Figure 3.18 shows that the moment coefficient does not change significantly
when the wing is in ground effect. The data were generaled using the relaxed
wake approach and show that the centiroid of the lift is unaflected by the ground
effect. This graph is a composite of the relaxed wake moment curves shown in
Figures 3.13 and 3.16.

The change in the lift coeflicient due to a unit ele\;on deflection centered at
8° as the wing approaches the ground is shown in Figure 3.19 for three angles of
attack. As the wing nears the ground, a unit flap deflection results in a greater
change in the lift coeflicient. For o = 8° and 16°, the slope of the curves contin-
uously increases, but for & = 24°, the change in the slope of the curve decreases
when the wing reaches a non-dimensional height of 0.4. The cross-over also sug-
gests that for low heights, there is an angle of attack which exploits both the an-
gle of attack cflects and the height effects in such a way that the change in hift
due to a given control deflection is maximized. This angle appears to be between
16° and 24° from the information in the figure.

Figure 3.20 shows the change in the moment coeflicient due to a unit elevon

deflection as the wing approaches the ground at three different angles of attack.
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At low and medium angles of attack, the change in the nose-down moment in-
creases as the non-dimensional height decreases. At high angles of attack, the
nose-down moment increases until a non-dimensional height of 0.3, at which point
the moment generated by a given control deflection decreases. Thus, there is a
predicted slight decrease in control power for the combined conditions of a high
angle of attack and a low height above the ground.

As noted for Figure 3.19, there appears to be an angle of attack between
o = 16° and @ = 24° which maximizes the control effectiveness about a given
deflection at low heights above the ground. Simply, this means that both fig-
ures suggest that control power is not a monotonic function of the angle of attack
when the wing is so close to the ground.

Finally, it should be poinied out that the changes in lift and moment coef-
ficients displayed in Figures 3.19 and 3.20 were determined for a positive elevon
deflection. A negative clevon deflection may have a somewhat different effect con-

sidering the possible interaction of the relaxed wake with the ground plane.



Summary and Conclusions

An investigation of the aerodynamic characteristics of highly swept delta
wings with flaps operating in ground eflect was conducted. A vortex-lattice com-
puter program which incorporated a ground plane and a relaxed wake iteration
scheme was developed to facilitale the research. The results gencrated by the
program, VLM-TIG, were compared with experimental data and other similar
programs to evaluate its ability to predict experimental results and its ability to
improve upon previous programs, respectively. The following conclusions are pre-
sented:

1. It was found that VLM-FIG is a better predictor of aerodynamic characteris-
tics than APAS, presumably because VLM-FIG uses a free-wake analysis.

2. VLM-FIG predicts that the moment due to a flap defleciion in ground effect
generally produces a greater increasc in both C, and Cas than the same de-
flection produces out of ground effect.

3. When results from VLM-FIG using a free and flat wake in and out of ground
effect were analyzed, it was found that the ground effect and the freec wake
affect the vortex-lift characteristics of the wing more than the potential-lift
characteristics. In addition, when the wing was evaluated in ground effect
the effects of the free wake were significant.

4. VLM-FIG has been shown to be an effective ool for predicting stability and
control derivatives. These derivatives are necessary for future work directed
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towards a full static and dynamic stability and control analysis.
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Appendix A: Computer Program Description

Programming Method

The computer program used to perform this investigation will be explained
with continual reference to Figure A.1.  Figure A.l provides a general putline of
the steps which the program follows when it is executed.

Before VLM-FIG is run, three separate programs must be defined and lo-
cated in the same directory as VLM-FIG. The first of these, “blok.for” contains
the variables in the common block as well as the variables which need to be di-
mensioned; it should not be altered. The second is “data.for.” which contains all
flap and wing geometrical data, the angle of attack, and the ground-eflect infor-
mation. This will need to be altered cach time a different case is run. Table A.1
defines all of the variables needed for the most general cases to be run and Fig-
ure A.2 displays theses variables on a generalized wing. Note that an undeflected
trailing-edge flap may be handled by setiing DELTE = 0.0, by setting ITEFLEC
= 0.0, or by setting NTEFL = 0. The same is true for a leading-edge flap if its
analogous variables are similarly defined. The third program is “panel.for,” which
contains the wing and wake panelling information. Dense panelling results in ex-
cessive CPU time, especially if the ground-effect option is being used.

After subroutine VINITL has been called and the three ancillary programs
have been included, the program calls subroutine GEOM. The main purpose of
GEOM is to determine the z and y coordinates of the control points and of the
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VLM-FIG
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Figure A.1. Flow Chart for VLM-FIG
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Table A.1 A List of Variables to be Defined in ‘data.for’

ino Edoe Vari

NLEFL
ILIGNL = 1
FANG(1)
FLASWE(1)
FLINX(1)
FLINY(1)
FOUTX(1)
FOUTY(1)
IDFLECT(1) =1
DELLE(1)

FANG(NLEFL)
FLASWE(NLEFL)
FLINX(NLEFL)
FLINY (NLEFL)
FOUTX(NLEFL)
FOUTY(NLEFL)

IDFLECT(NLEFL) =2
DELLE(NLEFL)=0.0

NUMEDGL =2

Ting Vari

NTEFL
ILIGNT(1)
TFANG(1)
TFLASW(1)
TFINX(1)
TFINY(1)
TOUTX(1)
TOUTY(1)
ITEFLEC(1)
DELTE(1)

ILIGNT(NTEFL)
TFANG(NTEFL)
TFLASW(NTEFL)
TFINX(NTEFL)
TFINY(NTEFL)
TOUTX(NTEFL)
TOUTY(NTEFL)
ITEFLEC(NTEFL)
DELTE(NTEFL)
NUMEDGT =2

Description of Input

number of leading edge flaps

first inboard part of flap is aligned with the freestream
hinge-line sweep angle of flap(1) (downward from horizontal)
leading edge sweep angle of flap(1) (ccw from vertically down)
x coordinate of the most inboard hinge point

y coordinate of the most inboard hinge point

x coordinate of the most outboard leading edge point

y coordinate of the most outboard leading edge point

flap(1) is deflected

flap(1) deflection in degrees

hinge-line sweep angle of outermost flap

leading edge sweep angle of outermost flap

x coordinate of the most inboard hinge point on outermost flap
y coordinate of the most inboard hinge point on outermost flap
x coordinate of the most outboard le point on outermost flap

y coordinate of the most outboard le point on outermost flap
flap(NLEFL) is not deflected

flap(NLEFL) is deflected 0.0 degrees

numeric designation of the le flap on the wing edge

Description of Input

number of trailing edge flaps

inboard part of first te flap is aligned with the freestream
hinge-line sweep angle of te flap(1) (downward from horizontal)
te sweep angle of te flap(1) (downward from horizontal)
x coordinate of most inboard hinge point of TEF1

y coordinate of most inboard hinge point of TEF1

x coordinate of most outboard point on te of TEF1

y coordinate of most outboard point on te of TEF1
TEFLAP(1) is deflected

TEFLAP(1) deflection in degrees (+ downward)

inboard part of outermost te flap is aligned with the freestream
hinge-line sweep angle of outermost te flap

trailing edge sweep angle of outermost te flap

x coordinate of most inboard hinge point of outermost te flap
y coordinate of most inboard hinge point of outermost te flap
x coordinate of most outboard te point of outermost te flap

y coordinate of most outboard te point of outermost te flap
outermost te flap is deflected

TEFLAP(NTEFL) deflection in degrees (+ downward)
numeric designation of the te flap on the wing edge
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Figure A.2 Location of Input Parameters on a Generalized Wing
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endpoint of the vortex segmenis which lie on the wing. The trailing-edge points
where the vortex segments first touch the wake are also calculated. As a conse-
quence of calculating these values, the aspect ratio, wing span, and chord at vari-
ous spanwise locations are found.

Since the program allows for wings with up to nine cranks in the leading and
trailing edges, it is necessary to determine the spanwise location of a point. The
subroutines FIND and TEFIND determine the distance of the leading edge be-
hind the apex and of the trailing edge bchind the root chord. This enables the
local chord to bre calculated, which is critical to proper panelling.

If the ground effect option is being used, GEOM calculates the parameters
which are used to locate the intersection of the root chords of the real wing and
the image wing.

The subroutine ZWINGIN is intended to be used for manually entering the
z coordinates of a nonplanar wing. By dcfault, a planar wing is input. If the
ZWINGIN option is chosen, the program will list the z and y coordinates of the
control points and vortex segments. The user must then input the proper z co-
ordinates. The subroutine SLOPE will set the slope of the wing Lo zero at each
control point. For non-planar wings, the slope at each control point must be en-
tered manually.

At this point, the program has determined the slope and location of each

control point and has determined the locations of all wing vortex segments. If
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the wing is flapped, it must be determined which of these should be altered, and
by how much.

Subroutine FLAPLE uses the points which were entered in “data.for” to
define regions near the wing leading edge which are flapped, while subroutine
FLAPTE uses the points to define regions near the wing trailing edge which are
flapped. If a vortex segment endpoint lies on a flapped region, then it is con-
nected to the hinge with a perpendicular line and this line is rotated about the
hingeline until it reaches an angle which equals the flap deflection. Control points
are moved similarly, and the slope of the wing is also changed by an amount equal
to the flap deflection. Subroutines PERPLE and PERPTE are used for finding
perpendicular distances and changing slopes of affected points.

The wing geometry is now fixed, but the wake geometry must be defined.
Subroutine ZWAKEIN performs this function by defining each node in the wake
as having the same y- and z-coordinates as the point on the trailing edge of the
wing over which the segment’s vortex line passed.

The next major portion of the program enables the wake to reach a relaxed
position and it begins when the DO WHILE loop is first encountered.

There are two phases to the iteration scheme, the first occurs when the vari-
able NEVEN equals 1 and the second occurs when the variable NEVEN equals 2.
Phase | calculates influence coeflicients, solves a set of simultaneous equations to

find the circulation strengths, and then calculates the lift coefficient. Phase 2 uses
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the known values of circulation to calculate the downwash in the wake and then
a subroutine 1s used té move the wake locations. Phase 1 is then re-entered so
that the strengths of the circulations based on the new wake locations can be re-
calculated. The specific path which is followed to carry out this procedure is now
described.

For Phase 1, subroutine BIOTVEC is called so that the endpoints of the
vortex segments can be selected for analysis. Since the vorticies are horseshoe
shaped, vortex segments will overlap near the rear portions of the wing which
means that several vortex strengths sharc the same location on the wing and
wake. Subroutine BIGSUB is then called so that the influence coefficient at each
control point due to the particular segment may be found. These values are then
added to the previous values of the influence coefficient of each control point.
Since BIGSUB must calculate the effect for many segments (~ 1000) at all the
control points, the only information about the segment which is saved is the scg-
ment bound vortex location and the location of the control point being influ-
enced. This allows the versatility to standardize the calculations, particularly
with regard to ground ellect, but consequently only the summed influence coef-
ficients, Cn can be known after a segment has been processed by BIGSUB. Sub-
routine BIGSUB calls subroutines CROSS, SMAG, DOT, and FACTOR to cross
two veclors, find the magnitude of a vector, dot two veclors, and calculate a fac-

tor needed for the Biot-Savart law, respectively. Subroutine ZWAKETIN is called
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next, but since the iteration is in Phase 1 control is returned to the main program
and suroutines CNDNS4 and CNDNS2 are called.

CNDNS4 is used to condense a four dimensional array into a two dimensional
array, while CNDNS2 is used to condense a two dimensional array into a one di-
mensional array. This is required since the canned subroutine LEQT1F solves
a system of equations with one and two dimensional arrays. No information 1s
gained or lost in this process, the control points and circulation strengths are sim-
ply identified using a different filing system.

Next, the boundary conditions are calculated, the linear equation solving
subroutine LEQTIF is called, and WLIFT is called to calculate the lift coeffi-
cient. The iteration phase is changed from NEVEN = 1 to NEVEN = 2 and the
second phase of the iteration is started.

Subroutine BIOTVEC begins the iteration phase by performing the same
function as it did for Phase 1, namely, to send all of the vortex segments to sub-
routine BIGSUB for processing. Since the program is in Phase 2, BIGSUB cal-
culates the influence coefficients as before, but since the circulation strengths
are known from Phase 1, il proceeds to calculate the downwash at each node in
the wake. Again, subroutines CROSS, SMAG, DOT, and FACTOR are called by
BIGSUB. |

ZWAKEIN is the next subroutine to be called, In this phase, it is the most

versatile subroutine in the program. The first two roles of this subroutine are to
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define vectors from each node to the node just downstream of it and from each
node to the new wake location of the node just downstream of it. Certain vector
operations are performed on these vectors so that the angle between them can be
calculated. The subroutine then checks if all of the nodes have angles which are
within the termination limit.

If all angles are within this limit, a flag variable is set for termination and
subroutines VORTEX, PPITCI, and VPITCH are called. These subroutines cal-
culate the vortex lift, the potential pitching moment and the vortex pitching mo-
ment. Subroutine VPITCH then calls OUT which \-vrites the output to a file, the
details of this output will be explained in the next section.

If all angles are not within the termination limit, the flag variable is not set
for termination, and control is soon returned to the main program where it will
switch NEVEN and the program will re-enter Phase 1. Because of empirical evi-
dence gathered during the program’s development, there is an option which allows
the program to be terminated even if all of the wake nodes have not converged. If
more than ten full iterations, consisting of two phases each, have been performed,
the program’s flag variable is set to the termination value and the termination
procedure described earlier is commenced. This option is most useful for high an-

gles of attack and it does not alter the results.
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Output

Subroutine OUT is used to generaie the output of VLM-FIG. The angle of
attack, the taper ratio, the notch ratio and the leading-edge sweep angles are
the parameters which are echoed as a check that they were properly entered in
the program. Rather than echo all of the other input parameters, the aspect ra-
tio is printed. The aspect ratio is dependent on sweep, crank location, notch‘es,
and cropped tips and therefore, reveals a good deal of information about the pro-
gram. If the aspect ratio is too low, for example, it may indicale that the tip
chord which was entered was too large.

The potential, vortex, and total lift coeflicients are also tabulated. In ad-
dition, the potential, vortex, and total lift coefficients as well as the vortex and
potential constants are calculated. The total lift and moment coefficients are the
two values which are the most useful since they represent the aerodynamic char-
acteristics which would be measured in the wind tunnel or in flight. The other
values are most useful for comparing the predictions of VLM-FIG with the predic-

tions of other programs.



Appendix B: Computer Program Listing

- Filename: TOO.FOR
o
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
INCLUDE ’BLOK.FOR’
C 28 IN
INCLUDE ’PANEL.FOR’
C4IN
CALL VINITL
INCLUDE 'DATA.FOR’
CALL GEOM
CALL ZWINGIN
CALL SLOPE
CALL FLAPLE
CALL FLAPTE
CALL ZWAKEIN
DO WHILE (ITER .NE. 0)
NCOUNT=NCOUNT+1
WRITE(6,*) 'NCOUNT’,NCOUNT
CALL BIOTVEC
CALL ZWAKEIN
IF (NEVEN .EQ. 1) THEN
CALL CNDNS4
CALL CNDNS2
DO 100 I=1,KAU
B(I)=UINF*DSIN(ALPHA-DELTS(I))*DC0OS(DI)
100 CONTINUE
CALL LEQTiF(A,M,N,IA,B,IDGT,WKAREA,IER)
CALL WLIFT
END IF
IF (NEVEN .EQ. 1) THEN
NEVEN=2
ELSE
NEVEN=1
END IF
END DO
STOP
END
C
C SUBROUTINES SUBROUTINES SUBROUTINES
C
SUBROUTINE VINITL
IMPLICIT DOUBLE PRECISION (A-H,0-2)
INCLUDE ’BLOK.FOR’
o
C INITIALIZE THE VARIABLES
c
PI=DACOS(-1.0D0)
UINF=1.0
NCHORD 1=NCHORD+1
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NSPAN1=NSPAN+1

NWAKE1=NWAKE+1
LINES=NCHORD+NWAKE1
KAU=NCHORD*NSPAN
KAOI=NSPAN*NWAKE1

ITER=1

IER=0

IDGT=0

NCOUNT=0

NEVEN=1

M=1

N=KAU

1A=100

RETURN

END

o

o

o .

SUBROUTINE GEOM

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
INCLUDE ’BLOK.FOR’

C

LEEDM1=0

IF (LEEDS .GE. 2) THEN
LEEDM1=LEEDS-1

DO 500 I=1,LEEDM1

I1=I+1 )
ADAR(I)=(1./DTAN(SWEEP(I))-1./DTAN(SWEEP(I1)))*CRAN(T)**2
€0(I1)=Cc0(I)-(1./DTAN(SWEEP(I))-1./DTAN(SWEEP(I1)))*CRAN(I)
500 CONTINUE

END IF
BTRI=2.0*(CO(LEEDS)+CN)*DTAN (SWEEP (LEEDS))
YCUT=CT*DTAN (SWEEP (LEEDS) )
BCROP=(BTRI/2.0-YCUT)*2.0
AIRCUT=.5*CT*YCUT
AIRNOT=.5*CN*(BCROP/2.0)
ATRTRI=.5*(CO(LEEDS)+CN)*(BTRI/2.0)
IF (LEEDS .EQ. 1) THEN
CRAN(1)=BCROP/2.0

END IF

IF (NTREDS .EQ. 1) THEN
TRCRA(1)=BCROP/2.0
TRSPN(1)=BCROP/2.0

END IF

HOVB=HOVB*BCROP
SECDIS=HOVB/DSIN(ALPHA)
XSEC=1.0+SECDIS

NTREM1=0.0

IF (NTREDS .GE. 2) THEN
AIRNOT=2.0*AIRNOT

NTREM1=NTREDS-1
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DO 600 I=1,NTREM1
I1=I+1
IM1=I-1

- C

C CONVERT CHORDWISE TRCRA(I) TO SPANWISE TRSPN(I)
C WHY NOT JUST PUT IT IN AS A SPANWISE LOCATION?
o

IF (I .EQ. 1) THEN

TRTR=TRCRA(I)-CO(1)

IF (TWEEP(I) .LT. .001) THEN
TRSPN(I)=SPOCK

ELSE

TRSPN(I)=TRTR/DTAN(TWEEP(I))

END IF

ELSE

TRTR=TRCRA (I)-TRCRA(IM1)
TRSPN(I)=TRSPN(IM1)+TRTR/DTAN(TWEEP(I))
END IF

IF (TWEEP(I) .GT. .001) THEN
TRAR=(.5/DTAN(TWEEP(I))-.5/DTAN(TWEEP(I1)))*TRTR**2
END IF

AIRNOT=AIRNOT-TRAR

600 CONTINUE
TETRI=.5*CN*CN/DTAN(TWEEP (NTREDS))
AIRNOT=AIRNOT-TETRI

END IF

ATREA=2.0* (AIRTRI-AIRNOT-AIRCUT)

C

C

WRITE(6,*)’AREA OF WING’ ,AIREA

IF (LEEDS .GE. 2) THEN

DO 700 I=1,LEEDM1

AIREA=AIREA+ADAR(I)

700 CONTINUE

END IF

AR=BCROP*BCROP/AIREA

WRITE(6,*)'ASPECT RATIO’,AR
DELY=BCROP/(2.*FLOAT(NSPAN))
WEIGHT=4.0*DELY/AIREA

o

C CALCULATE THE VORTEX SEGMENT AND CONTROL POINT X,Y LOCATIONS

C

DO 910 I=1,NSPAN

DO 900 K=1,NCHORD

IM1=I-1

KM1=K-1

IF (I .EQ. 1 ) THEN
YCP(K,I)=DELY/2.0
YVLLFT(K,I)=YCP(K,I)-DELY/2.0
YVLRGT(K,I)=YCP(X,I)+DELY/2.0
ELSE
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YCP(K,I)=YCP(K,IM1)+DELY
YVLLFT(K,I)=YCP(K,I)-DELY/2.0
YVLRGT(K,I)=YCP(K,I)+DELY/2.0
" END IF

C

C CALCULATE THE CHORD AT A GIVEN Y LOCATION
C

DO 800 ICE=1,3

IF (ICE .EQ. 1) THEN
CORE=YCP(K,I)

CALL FOUND

XLOST=ALOSS

CALL TEFIND

XEXTRA=EXTRA

END IF

IF (ICE .EQ. 2) THEN
CORE=YCP(K,I)-DELY/2.0

CALL FOUND

XLOSTL=ALOSS

CALL TEFIND

XEXTRAL=EXTRA

END IF

IF (ICE .EQ. 3) THEN
CORE=YCP(K,I)+DELY/2.0

CALL FOUND

XLOSTR=ALOSS

CALL TEFIND

XEXTRAR=EXTRA

END IF

800 CONTINUE
CRDATY(I)=1.0+XEXTRA-XLOST
CRDATL=1.0+XEXTRAL-XLOSTL
CRDATR=1.0+XEXTRAR-XLOSTR

c

C CALCULATE DELTA X AT LEFT,RIGHT AND AT CONTROL POINT
C
DELX=CRDATY(I)/(FLOAT(NCHORD))
DELXL=CRDATL/ (FLOAT(NCHORD))
DELXR=CRDATR/ (FLOAT (NCHORD) )
IF (K .EQ. 1) THEN
XCP(X,I)=.75*DELX+(XLOST)
IVLLFT(K,I)=.25*DELXL+(XLOSTL)
XVLRGT (K,I)=.25*DELXR+(XLOSTR)
ELSE

XcP(K,I)=XCP(KM1,I)+DELX
XVLLFT(K,I)=XVLLFT(KM1,I)+DELXL
XVLRGT (K, I)=XVLRGT(KM1,I)+DELXR
END IF

YTEL(I)=YVLLFT(K,I)
YTER(I)=YVLRGT(K,I)

XTEL (I)=CRDATL+XLOSTL
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XTER(I)=CRDATR+XLOSTR
900 CONTINUE

910 CONTINUE

RETURN

ERD

C

C

c

SUBROUTINE FOUND
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
INCLUDE ’BLOK.FOR’

IF (CORE .LE. CRAN(1) .OR. (CRAN(1)-CORE) .LT. .0000001) THEN

ALOSS=CORE/DTAN(SWEEP (1))
XWEE=SWEEP(1)

ELSE

FIND=1.0

MOT=1

DO WHILE (FIND .LT. 10.0)
MOT=MOT+1

MOTM1=MOT-1

IF (MOT .LE. LEEDM1) THEN
YKRANK=CRAN (MOT)

ELSE

YKRANK=BCROP

END IF

IF (CORE .LE. YKRANK) THEN

IF (FCOR .GT. CRAN(MOTM1)) THEN
FIND=25.0

XWEE=SWEEP (MOT)

DO 1000 MOE=1,MOTN1
MOEM1=MOE-1

IF (MOE .EQ. 1) THEN
ALOSS=CRAN(1)/DTAN(SWEEP(1))
ELSE
ALOSS=AL0SS+(CRAN (MOE) -CRAN (MOEM1) ) /DTAN(SWEEP (MOE))
END IF

1000 CONTINUE
ALOSS=AL0OSS+(CORE-CRAN(MOTM1)) /DTAN(SWEEP (MOT))
END IF

END IF

END DO

END IF

RETURN

END

C

C

C

SUBROUTINE TEFIND

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
INCLUDE ’BLOK.FOR’

IF (CORE .LE. TRSPN(1)) THEN
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EXTRA=CORE*DTAN(TWEEP (1))

ELSE

FIND=1.0

MOT=1

DO WHILE (FIND .LT. 10.0)

MOT=MOT+1

HMOTM1=MOT-1

IF (MOT .LE. NTREM1) THEN
YKRANK=TRSPN(MOT)

ELSE

YKRANK=BCROP

END IF

IF (CORE .LE. YKRANK) THEN

IF (CORE .GT. TRSPN(MOTM1)) THEN
FIND=25.0

DO 1100 MOE=1,MOTH1

MOEM1=MOE-1

IF (MOE .EQ. 1) THEN
EXTRA=TRSPN(1)*DTAN(TWEEP (1))
ELSE :
EXTRA=EXTRA+(TRSPN (MOE)-TRSPN(MOEM1) ) *DTAN (TWEEP (MOE) )
END IF

1100 CONTINUE
EXTRA=EXTRA+(CORE-TRSPN(MOTM1))*DTAN(TWEEP (MOT))
END IF

END IF

END DO

END IF

RETURN

END

c

c

C

SUBROUTINE ZWINGIN

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
INCLUDE ’BLOK.FOR’

IF (NEVEN .EQ. 10) THEN

C WRITE(6,*)’XTEL ’,’YTEL ’,’FIND Z’
DO 4400 I=1,NSPAN

C WRITE(6*) XTEL(I),YTEL(I)

4400 CONTINUE

C WRITE(6,*),’XTER ’,’YTER ’,’FIND Z’
DO 4410 I=1,NSPAN

C WRITE(6,*),XTER(I),YTER(I)

4410 CONTINUE

DO 4420 I=1,NSPAN

C READ(6,*)ZTEL(I)

ZTEL(I)=0.0

4420 CONTINUE

DO 4430 I=1,NSPAN

C READ(6,*)ZTER(I)
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ZTER(I)=0.0

4430 CONTINUE

C

C NOW THE Z COORDINATES OF THE LEFT AND THEN RIGHT VORTEX SEGMENTS
WILL

C BE CALCULATED

o

C WRITE(6,*) 'XVLLFT’,’YVLLFT’,’FIND 2’

DO 4440 I=1,NSPAN

DO 4440 K=1,NCHORD

C WRITE(6,*)XVLLFT(K,I),YVLLFT(K,I)

4440 CONTINUE

C WRITE(6,*)’XCP ’,’YCP ’,’FIND 2’

DO 4450 I=1,NSPAN

DO 4450 K=1 ,NCHORD

C WRITE(6,*)XCP(K,I),YCP(K,I)

4450 CONTINUE

C WRITE(6,*) 'XVLRGT’,’YVLRGT’,’FIND Z’

DO 4460 I=1,NSPAN

DO 4460 K=1,NCHORD

C WRITE(6,*) ,XVLRGT(K,I),YVLRGT(X,I)

4460 CONTINUE

DO 4470 I=1,NSPAN

DO 4470 K=1,NCHORD

C READ(6,*)ZVLLFT(X,I)

ZVLLFT(K,I)=0.0

4470 CONTINUE

DO 4480 I=1,NSPAN

DO 4480 K=1,NCHORD

C READ(6,*)ZVLRGT(K,I)

ZVLRGT(K,I)=0.0

4480 CONTINUE

DO 4490 I=1,NSPAN

DO 4490 X=1,NCHORD

C READ(6,*)2CP(K,I)

ZCP(X,I)=0.0

4490 CONTINUE

END IF

RETURN

END

C

C

C

SUBROUTINE SLOPE

IMPLICIT DOUBLE PRECISION (A-H,0-2)

INCLUDE ’BLOK.FOR’

DO 50 I=1,NSPAN

DO 50 K=1,NCHORD

DZDX(K,I)=0.0

50 CONTINUE

RETURN



END

o

o

C

SUBROUTINE FLAPLE

IMPLICIT DOUBLE PRECISION (A-H,0-2Z)

INCLUDE ’BLOK.FOR’

LECT=0

DO 2000 JA=1,NLEFL

IF (IDFLECT(JA) .EQ. 1) THEN

LECT=LECT+1

NUML (LECT)=JA

WRITE(6,#*) *NUML (LECT) ,LECT’ ,NUML(LECT) ,LECT
END IF

2000 CONTINUE

IF (LECT .NE. 0) THEN

DO 2200 JI=1,LECT

JA=NUML(JI)

JA1=JA+1

FUNPTX=(FOUTY (JA)-FLINY(JA))*DTAN(FANG(JA))+FLINX(JA)
FUNPTX=FUNPTX+FOUTX (JA) *DTAN(FANG (JA) ) *DTAN(FANG (JA))
FUNPTX=FUNPTX/(1.0+DTAN(FANG(JA) )*DTAN(FANG(JA)))
FUNPTY=FLINY(JA)+(FUNPTX-FLINX(JA))/DTAN(FANG(JA))
C

FLUX=FLINY(JA)-FOUTY(JA)+FLINX (JA)*DTAN(FANG(JA))
FLUX=FLUX+FOUTX (JA)*DTAN(FLASWE(JA))
FLUX=FLUX/(DTAN(FANG(JA))+DTAN(FLASWE(JA)))
FLUY=FLINY(JA)+(FLINX(JA)-FLUX)*DTAN(FANG(JA))
DO 2100 I=1,NSPAN

DO 2100 K=1,NCHEORD

DO 2100 LOW=1,3

IF (LOW .EQ. 1) THEN

XPOIN=XCP(K,I)

YPOIN=YCP(K,I)

ZPOIN=ZCP(K,I)

END IF

IF (LOW .EQ. 2) THEN

XPOIN=XVLLFT(X,I)

YPOIN=YVLLFT(X,I)

ZPOIN=ZVLLFT(X,I)

END IF

IF (LOW .EQ. 3) THEN

XPOIN=XVLRGT(K,I)

YPOIN=YVLRGT(K,I)

ZPOIN=ZVLRGT(K,I)

END IF

c

C REGION 1

C

IF (ILIGN .EQ. 1) THEN

IF (JA .EQ. 1) THEN
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IF (XPOIN .LE. FLINX(JA)) THEN

CALL PERPLE

END IF

END IF

END IF

IF (JA .NE. 1 .OR. ILIGN .NE. 1) THEN

IF (XPOIN .LE. FLINX(JA)) THEN

IF (XPOIN .GE. FLUX) THEN
YUM=FLINY(JA)+(FLINX(JA)-XPOIN)*DTAN(FANG(JA))
IF (YPOIN .GE. YUM) THEN

CALL PERPLE

END IF

END IF

END IF

END IF

c

C REGION 2

o

IF (XPOIN .GE. FLINX(JA)) THEN

IF (XPOIN .LE. FOUTX(JA)) THEN
YUN=FLINY(JA)+(XPOIN-FLINX(JA))/DTAN(FANG(JA))
IF (YPOIN .GE. YUM) THEN

CALL PERPLE

END IF

END IF

END IF

C

C REGION 3

C

IF (XPOIN .GE. FOUTX(JA)) THEN

IF (NUMEDGL .EQ. NUML(JI)) THEN
XUM=FLINK(JA)+(FOUTY(JA)-FLINY(JA))*DTAN(FANG(JA))
IF (XPOIN .LE. XUM) THEN

YUM=FOUTY (JA)+(XPOIN-XUM) /DTAN(FANG(JA))

IF (YPOIN .GE. YUM) THEN

CALL PERPLE

END IF

END IF

ELSE

IF (XPOIN .LE. FUNPTX) THEN

TEMX=FLUX

TEMY=FLUY
FLUX=FLINY(JA1)-FOUTY(JA1)+FLINX(JA1)*DTAN(FANG(JAL))
FLUX=FLUX+FOUTX(JA1)*DTAN(FLASWE(JA1))
FLUX=FLUX/ (DTAN(FANG(JA1))+DTAN(FLASWE(JA1)))
FLUY=FLINY(JA1)+(FLINX(JA1)-FLUX)*DTAN(FANG(JA1))
YUM=(XPOIN-FLINX(JA))/DTAN(FANG(JA))+FLINY(JA)
IF (YPOIN .GT. YUM) THEN

IF (XPOIN .LE. FLUX) THEN

CALL PERPLE

ELSE
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YUM=FLUY- (XPOIN-FLUX)*DTAN(FANG(JA1))

IF (YPOIN .LE. YUM) THEN

CALL PERPLE

END IF

END IF

END IF

FLUX=TEMX

FLUY=TEMY

END IF

END IF

END IF

IF (LOW .EQ. 1) THEN

ZCP(K,I)=ZPOIN

END IF

IF (LOW .EQ. 2) THEN

ZVLLFT(K,I)=ZPOIN

END IF

IF (LOW .EQ. 3) THEN

ZVLRGT(K,I)=ZPOIN

END IF

2100 CONTINUE

2200 CONTINUE

END IF

RETURN

END

o

C

C

SUBROUTINE PERPLE

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
INCLUDE ’BLOK.FOR’

C
PERX=(YPOIN-FUNPTY)*DTAN(FANG(JA) )+FUNPTX
PERX=PERX+XPOIN*DTAN(FANG(JA))*DTAN(FANG(JA))
PERX=PERX/(1.0+DTAN(FANG(JA))*DTAN(FANG(JA)))
PERY=YPOIN+(XPOIN-PERX)*DTAN(FANG(JA))
DISTN=( (XPOIN-PERX)**2+(YPOIN-PERY) **2)** .5
ZPOIN=ZPOIN-DISTN*DCOS(DI)*DSIN(DELLE(JA))
IF (LOW .EQ. 1) THEN
DZDX(K,I)=DZDX(K,I)+DTAN(DELLE(JA))=*DCOS(FANG(JA))
END IF

RETURN

END

C

C

C

SUBROUTINE FLAPTE

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
INCLUDE ’BLOK.FOR’

ITECT=0

DO 3000 JA=1,NTEFL
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IF (ITEFLEC(JA) .EQ. 1) THEN

ITECT=ITECT+1

NUMT(ITECT)=JA

END IF

WRITE(6,*) 'NUMT(ITECT),ITECT’ ,NUMT(ITECT),ITECT
3000 CONTINUE

IF (ITECT .NE. 0) THEN

DO 3200 JI=1,ITECT

JA=NUMT(JI)

JA1=JA+1

o

IF (ILINTI(JA) .EQ. 1) THEN
TIX=(TFINY(JA)-TOUTY(JA))*DTAN(TFANG(JA))+TOUTX(JA)
TIY=TFINY(JA)

ELSE

TIX=TOUTX (JA)+(TFINY(JA)-TOUTY(JA))*DTAN(TFANG(JA))
TIX=TIX+TFINX(JA)*DTAN(TFANG(JA))*DTAN(TFANG(JA))
TIX=TIX/(1.0+DTAN(TFANG(JA))*DTAN(TFANG(JA)))
TIY=TFINY(JA)+(TFINX(JA)-TIX)*DTAN(TFANG(JA))

END IF

IF (ILINTO(JA) .EQ. 1) THEN

TOY=TOUTY (JA)

TOX=TOUTX (JA)+(TOUTY(JA)-TFINY(JA))*DTAN(TFLSWE(JA))
ELSE

TOX=(TOUTY(JA)-TFINY(JA) )*DTAN(TFLSWE(JA))+TFINX(JA)
TOX=TOX+TOUTX (JA)*DTAN(TFANG(JA))*DTAN(TFLSWE(JA))
TOX=T0X/(1.0+DTAN(TFANG(JA) )*DTAN(TFLSWE(JA)))
TOY=TOUTY (JA)+(TOUTX(JA)-TOX)*DTAN(TFANG(JA))

END IF

o

DO 3160 I=1,NSPAN

DO 3140 K=1 ,NCHORD

DO 3120 LOT=1,5

IF (LOT .EQ. 1) THEN

XPOIN=XCP(K,I)

YPOIN=YCP(K,I)

ZPOIN=ZCP(K,I)

END IF

IF (LOT .EQ. 2) THEN

XPOIN=XVLLFT(K,I)

YPOIN=YVLLFT(K,I)

ZPOIN=ZVLLFT(K,I)

END IF

IF (LOT .EQ. 3) THEN

XPOIN=XVLRGT(K,I)

YPOIN=YVLRGT(X,I)

ZPOIN=ZVLRGT(X,I)

END IF

IF (LOT .EQ. 4) THEN

IF (K .EQ. 5) THEN

XPOIN=XTEL(I)
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YPOIN=YTEL(I)
ZPOIN=ZTEL(I)

END IF

END IF

IF (LOT .EQ. 5) THEN

IF (K .EQ. 5) THEN
XPOIN=XTER(I)
YPOIN=YTER(I)
ZPOIN=ZTER(I)

END IF

END IF

o
XUM=TIX+(YPOIN-TIY)*DTAN(TFANG(JA))
IF (XPOIN .GE. XUM) THEN

IF (ILINTI(JA) .EQ. 1) THEN
IF (YPOIN .GE. TIY) THEN

IF (ILINTO(JA) .EQ. 1) THEN
IF (YPOIN .LE. TOY) THEN
CALL PERPTE

NTMOVE=1

END IF

ELSE

YUM=TOY+ (TOX-XPOIN)*DTAN(TFANG(JA))
IF (YPOIN .LE. YUM) THEN
CALL PERPTE

NTMOVE=1

END IF

END IF

END IF

ELSE
YUM=TFINY(JA)+(TFINX(JA)-XPOIN)*DTAN(TFANG(JA))
IF (YPOIN .GE. YUM) THEN

IF (ILINTO(JA) .EQ. 1) THEN
IF (YPOIN .LE. TOY) THEN
CALL PERPTE

NTMOVE=1

END IF

ELSE
YUM=TOY+(TOX-XPOIN)*DTAN(TFANG(JA))
IF (YPOIN .LE. YUM) THEN
CALL PERPTE

NTHMOVE=1

END IF

END IF

END IF

END IF

END IF

C

IF (LOT .EQ. 1) THEN
ZCP(K,I)=ZPOIN

END IF
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IF (LOT .EQ. 2) THEN

ZVLLFT(K,I)=ZPOIN

END IF

IF (LOT 